Symfoware

Symfowareについての考察blog

Apache Spark 1.4 を Debian 8(Jessie)にインストールする

以前もSparkを動かしてみたのですが、
Apache Spark を Debian 7(wheezy)にインストール
当時はバージョン0.8.1でした。

気がつくと1.4.0まで上がっていたので、再度手順を確認してみます。


Java 8のインストール



Oracle Javaをインストールしました。
Debian 8(jessie)にJava 8(OracleVM)をインストールする


バージョンは1.8.0_45です。


# java -version
java version "1.8.0_45"
Java(TM) SE Runtime Environment (build 1.8.0_45-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)






Sparkの取得



ダウンロードページから取得します。
https://spark.apache.org/downloads.html

Hadoop 2.6がつかえるものをダウンロードしてみました。

620_01.png


wgetで取得し、/optに展開しました。


# cd /opt
# wget http://d3kbcqa49mib13.cloudfront.net/spark-1.4.0-bin-hadoop2.6.tgz
# tar zxf spark-1.4.0-bin-hadoop2.6.tgz
# cd spark-1.4.0-bin-hadoop2.6




このまま起動すると、もりもりログが出力されるので、
log4jの設定ファイルを設定します。
Apache Spark spark-shell起動時のログの警告に対処する(log4j.properties)



# cp conf/log4j.properties.template conf/log4j.properties
# vi conf/log4j.properties



「INFO」を「ERROR」に変更しました。


# Set everything to be logged to the console
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark-project.jetty=WARN
log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO




spark-shellを起動し、前回同様「README.md」の内容を検索してみます。


# bin/spark-shell
Welcome to
     ____             __
     / __/__ ___ _____/ /__
    _\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.4.0
     /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.

scala>



scala> val txtFile = sc.textFile("README.md")
txtFile: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at <console>:21

scala> txtFile.count()
res0: Long = 98

scala> txtFile.filter(line => line.contains("Spark")).count()
res1: Long = 19

scala> txtFile.filter(line => line.startsWith("Spark")).foreach(println)
Spark is a fast and general cluster computing system for Big Data. It provides
Spark is built using [Apache Maven](http://maven.apache.org/).
Spark also comes with several sample programs in the `examples` directory.
Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported




仕様は変わっていないようですね。
exit()でshellを終了します。


scala> exit()




ちなみに、README.mdの内容はこんな感じ。


# Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides
high-level APIs in Scala, Java, and Python, and an optimized engine that
supports general computation graphs for data analysis. It also supports a
rich set of higher-level tools including Spark SQL for SQL and structured
data processing, MLlib for machine learning, GraphX for graph processing,
and Spark Streaming for stream processing.

<http://spark.apache.org/>


## Online Documentation

You can find the latest Spark documentation, including a programming
guide, on the [project web page](http://spark.apache.org/documentation.html)
and [project wiki](https://cwiki.apache.org/confluence/display/SPARK).
This README file only contains basic setup instructions.

## Building Spark

Spark is built using [Apache Maven](http://maven.apache.org/).
To build Spark and its example programs, run:

    mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)
More detailed documentation is available from the project site, at
["Building Spark"](http://spark.apache.org/docs/latest/building-spark.html).

## Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

    ./bin/spark-shell

Try the following command, which should return 1000:

    scala> sc.parallelize(1 to 1000).count()

## Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

    ./bin/pyspark
    
And run the following command, which should also return 1000:

    >>> sc.parallelize(range(1000)).count()

## Example Programs

Spark also comes with several sample programs in the `examples` directory.
To run one of them, use `./bin/run-example <class> [params]`. For example:

    ./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit
examples to a cluster. This can be a mesos:// or spark:// URL,
"yarn-cluster" or "yarn-client" to run on YARN, and "local" to run
locally with one thread, or "local[N]" to run locally with N threads. You
can also use an abbreviated class name if the class is in the `examples`
package. For instance:

    MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

## Running Tests

Testing first requires [building Spark](#building-spark). Once Spark is built, tests
can be run using:

    ./dev/run-tests

Please see the guidance on how to
[run all automated tests](https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark#ContributingtoSpark-AutomatedTesting).

## A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported
storage systems. Because the protocols have changed in different versions of
Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at
["Specifying the Hadoop Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version)
for detailed guidance on building for a particular distribution of Hadoop, including
building for particular Hive and Hive Thriftserver distributions. See also
["Third Party Hadoop Distributions"](http://spark.apache.org/docs/latest/hadoop-third-party-distributions.html)
for guidance on building a Spark application that works with a particular
distribution.

## Configuration

Please refer to the [Configuration guide](http://spark.apache.org/docs/latest/configuration.html)
in the online documentation for an overview on how to configure Spark.


関連記事

テーマ:サーバ - ジャンル:コンピュータ

  1. 2015/06/23(火) 22:44:26|
  2. Scala
  3. | トラックバック:0
  4. | コメント:0
  5. | 編集
<<Debian 8(Jessie) ssh経由でシャットダウンするとコンソールが固まる | ホーム | Python 件数のカウントにCounterオブジェクトを使用する>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバック URL
http://symfoware.blog68.fc2.com/tb.php/1733-c9f25646
この記事にトラックバックする(FC2ブログユーザー)